QuestionAnswered step-by-step54 27 21 6 7 39 5 3 49 6 7 37 46 46 38 27 47 43 52 31 52 57 22 29…54 27 21 6 739 5 3 49 67 37 46 46 3827 47 43 52 3152 57 22 29 4710 19 13 37 1211 4 13 29 854 26 31 35 1019 22 4 12 66 49 59 12 11 Use the table above to create an 80%, 95%, and 99% confidence interval. Choose another confidence level (besides 80%, 95% or 99%) to create another confidence interval. Sample Size n = 50Sample Mean = x? = ?X/n = 26.2000Sample Standard Deviation = s = ?(?(X- x? )²/(n-1) ) = 17.68777 80%Level of Significance , ? = 0.2 degree of freedom= DF=n-1= 49 ‘t value=’ t?/2= 1.299 [Excel formula =t.inv(?/2,df) ] Standard Error , SE = s/?n = 17.6878/?50= 2.5014 margin of error , E=t*SE = 1.299*2.5014= 3.24953 Confidence interval is Interval Lower Limit = x? – E = 26.2-3.2495= 22.95047 Interval Upper Limit = x? + E = 26.2+3.2495= 29.44953 80% Confidence interval is (22.95 < µ < 29.45 ) 95%Level of Significance , ? = 0.05 degree of freedom= DF=n-1= 49 't value=' t?/2= 2.010 [Excel formula =t.inv(?/2,df) ] Standard Error , SE = s/?n = 17.6878/?50= 2.5014 margin of error , E=t*SE = 2.01*2.5014= 5.02681 Confidence interval is Interval Lower Limit = x? - E = 26.2-5.0268= 21.17319 Interval Upper Limit = x? + E = 26.2+5.0268= 31.22681 95% Confidence interval is 21.17 < µ < 31.23 ) 99%Level of Significance , ? = 0.01 degree of freedom= DF=n-1= 49 't value=' t?/2= 2.680 [Excel formula =t.inv(?/2,df) ] Standard Error , SE = s/?n = 17.6878/?50= 2.5014 margin of error , E=t*SE = 2.68*2.5014= 6.70371 Confidence interval is Interval Lower Limit = x? - E = 26.2-6.7037= 19.49629 Interval Upper Limit = x? + E = 26.2+6.7037= 32.90371 99% Confidence interval is 19.50 < µ < 32.90 ) Provide a sentence for each confidence interval created above which explains what the confidence interval means in context of topic of your project. 80% Confidence interval is (22.95 < µ < 29.45 )This implies that we are 80% confident that the mean lies between 22.95 and 29.45 with a margin error of 3.24953 . 95% Confidence interval is 21.17 < µ < 31.23 )This means that we are 95% confident that the mean scores lies between 21.17 and 31.23 with a margin error of 5.02681 99% Confidence interval is 19.50 < µ < 32.90 )This means that we are 99% confident that the mean scores lies between 19.50 and 32.90 with a margin error of 6.70371 --------------------------------------------------------QUESTION----------------------------------------------------- (Round the mean and sample standard deviation to values to FIVE decimal places) Sample Mean = Sample Standard Deviation = (Round the lower/upper limits and margin of error to THREE decimal places). 80% Confidence Interval: 80% Confidence Interval Margin of Error:MathStatistics and ProbabilityMATH 399Share Question